
Modern Java Development

Drivers
▪ Jan Van Wassenhove

▪ Lead Architect Tobania.Development
▪ 15 years of working experience
▪ Connect on
▪ Instagram “mITy.John”

▪ Sébastien Vanpé
▪ Architect Tobania.Development
▪ 20 years of working experience
▪ Connect on

A small throwback in history…

For a long time, Java was the undisputed number one
programming language…

▪ Perfect for large, monolithic enterprise applications

• Outstanding IDE’s

• Very big community and companies support

• Mature, Secure, Stable, and Robust Ecosystem

• JVM based-language (Java, Kotlin, Groovy, and Scala)

• Platform Independent.

Unfortunately…

▪Rise of Microservices and Serverless…
▪ Java is disadvantageous as JVM seems too large

▪ high memory footprint

▪ slow (slow startup time)

▪ In modern container-based development
▪ container has limited resources

▪ As a result, faster languages like Node.js, Golang in Cloud-Native
development

Java Developers never RIP,
They just get Garbage Collected

So finally…

the Java Community provided a
modern version of Java

A new era of speed arises…

The rise of Java Microframeworks

But first a little sidetrack …

Moving to microservices

We can scale…
but our resources
are finite!

So how to use
less resources ?

Microframeworks

▪Refers to minimalistic web application frameworks
▪ Without authentication and authorization
▪ Without database abstraction via object-relational mapping
▪ Without input validation an input sanitation

▪ Examples
▪ Javalin
▪ Micronaut
▪ Helidon
▪ Quarkus
▪ …

But less modules, functions
and dependencies are not

enough…

How do e.g. Spring or Jakarta EE work?

Spring e.g. is an amazing technical achievement and does
so many things, but does them at Runtime.

▪ Reads the byte code of every bean it finds.
▪ Synthesizes new annotations for each annotation on each

bean method, constructor, field etc. to support Annotation
metadata.

▪ Builds Reflective Metadata for each bean for every
method, constructor, field etc.

So when using
reflection…

… is it possible to have the
same productivity but without
reflection?

Yes, of course!

With AOT Compilation!

“Compiling high level programming language or intermediate
representation such as java byte code into native machine
code so that the resulting binary file can execute natively.”

This will result in
▪Short startup time
▪Dependency injection at compile time
▪Can be run with as little as 15mb Max Heap

Ahead of Time (AOT) Compilation

GraalVM

▪ It’s a tool for developers to write and execute Java code
▪ It is a Java Virtual Machine (JVM)
▪ and Java Development Kit (JDK) created by Oracle

▪ The JDK distribution offering contains
▪ AOT (ahead-of-time) compilation
▪ Polyglot programming
▪ Compiles to directly Native Code
▪ Perfectly suitable for Cloud-Native development (low memory

footprint, first startup time)
▪ For existing Java applications, GraalVM can provide benefits by running

them faster, providing a faster Just In Time (JIT) Compilation

GraalVM objectives

The main objectives of GraalVM are:
▪ To write a compiler that is faster and easier to maintain
▪ Low-footprint, fast-startup Java for Cloud and Serverless
▪ Improving the performance of languages that run on the JVM

… and so reducing application startup times
▪ Integrating multi-language support into the Java ecosystem,

as well as providing a set of programming tools to do so

GraalVM architecture

Does it ring a bell?

Let’s compile!
A word on Graal AOT & JIT compilation

Graal JIT Compilation

Just In Time (JIT) compilation
▪ a way of executing computer code that involves compilation during

execution of a program
▪ It runs complex optimizations to generate high-quality machine code

1. Compiling source code into binary
presentation (JVM bytecode).

2. To be able to run a Java program,
the JVM interprets the bytecode.

3. The JVM runs another compiler
which will now compile our bytecode
into the machine code that can be
run by the processor: JIT

Optimizations
to generate

high-quality
machine code

Graal AOT Compilation

AOT Compilation “compiling a higher-level programming language into a lower-level language
before execution of a program, usually at build-time, to reduce the amount of work needed to be
performed at run time.”

AOT

GraalVM – Limitations Native Image

▪ Dynamic Class Loading
▪ Deploying jars, wars, etc. at runtime impossible.

▪ Reflection
▪ Requires registration via native-image CLI/API.

▪ Dynamic Proxy
▪ No agents: JMX, JRebel, Byteman, profilers, tracers, etc.

The word “Graal” comes from old French
(or Dutch?) for “Grail”

The “Graal” Oracle project started out as a
research project inside Oracle Labs,
attempting to make a Java compiler while
being fast and easy to maintain.

The “VM” in “GraalVM” comes from the fact
that it runs inside the JVM.

GraalVM

Microprofile

▪ A community-driven specification
▪ designed to provide a baseline platform definition

▪ optimizes the Enterprise Java for microservices architecture
▪ delivers application portability across multiple MicroProfile runtimes

▪ The founding vendors of MicroProfile offered their own
microservices frameworks:
▪ Open Liberty (IBM)
▪ WildFly Swarm (Red Hat) Thorntail Quarkus
▪ TomEE (Tomitribe)
▪ Payara Micro (Payara)

Quarkus

▪From Redhat

▪Similar to Spring Boot (but faster)

▪A K8S native Java framework
▪ uses GraalVM instead of traditional OpenJDK

▪ applications that are smaller:

▪ have faster startup time and are more suitable for
container-based development

How does a regular framework start?

And in comes the Duke

… on “Quarkus”

Supersonic…

The Quarkus way

Pros and cons?

▪ User friendliness (JEE & Spring devs), solid
framework, “best of breed” framework
standards
▪ Eclipse MicroProfile
▪ Spring Dependency Injection
▪ Hibernate ORM

▪ Performance
▪ Fast application start-up time
▪ Low memory consumption
▪ Almost immediate scaling of services
▪ Lower space requirements for native images

Pros and cons?

▪ Reducing the dynamic information generated during runtime can lead to
problems in some scenarios.

▪ The severely limited possibilities for introspection may make it difficult
to debug an application.

▪ The highly-optimized build process for native images takes a long time…

Micronaut

▪ Introduced in 2018 by the creators of the Grails framework
▪ JVM-based software framework for building:

▪ lightweight, modular applications and microservices

▪ Small memory footprints and short startup times
▪ Builds its dependency injection data at compile time.
▪ Startup time and memory consumption are not tied to the size of an app's

codebase
▪ development of integration tests much easier and their execution much faster

Micronaut

▪ Micronaut analyzes metadata as soon as the application is compiled.
▪ During this compilation phase Micronaut will

Generate an additional set of classes that represent the state of
the application already preconfigured

This enables dependency injection (DI) and aspect-
oriented programming (AOP) behavior to be applied

much more efficiently when the application finally runs

Micronaut

Quarkus is more reliant on Jakarta EE and Eclipse MicroProfile APIs,

Micronaut defines it's own APIs and is more inspired by the Spring and Grails
frameworks

▪ API is quite similar to the one in Spring and Grails

When to use?
You need native images

▪ graalVM / docker / Kubernetes
▪ Function as service

… but you cannot handle
▪ Living on the bleeding edge
▪ Frequent updates

… or you need something special
▪ Gradle/Groovy support maybe?

Spring Native

A quick word on Spring & Spring Boot …

▪Spring MVC/Spring Boot
▪ most dominant (?) Server-Side framework in Java

▪ uses the conventional OpenJDK

▪ slowly loses its charm in Cloud-Native Java Development

▪Finally… Spring came up with Spring Native,
▪ which will use GraalVM for Cloud-Native development

Difference with Spring

▪ No class lazy loading as everything shipped in the executables will be loaded in memory
on startup

▪ Classpath scanning is fixed at build time

▪ Static analysis of your application from the main entry point is performed at build time

▪ Removing the unused parts of the codebase at build time

▪ Configuration is required for reflection, resources, and dynamic proxies

Let’s put them all
next to each other

Comparisons

Quarkus
▪ Is suitable for a wide range of different application scenarios.
▪ Other frameworks are more specific to some extent.
▪ Large community

Open Liberty
• This IBM framework allows for the development of microservice

applications with Java.
• Like Quarkus, Open Liberty comes with a live reload functionality.

Comparisons

Micronaut
• With the Micronaut framework, microservices and serverless applications

can be programmed in Java.
• As with Quarkus, GraalVM is used here.
• Less performant then Quarkus

Spring Native
• Spring is probably the most popular Java framework for web applications.
• Spring Native is based on GraalVM and, in addition to the creation of

microservices, it supports reactive programming and live reload. In a
performance comparison, Quarkus beats Spring Native.

• An existing Spring project can be migrated to Quarkus relatively easily.
• On the other hand, Quarkus comes with a more steap learning curve.

Demo Time!

Quarkus

GraalVM
Spring Native

Demo

▪ The Demo App : Discount Service

▪ Meet Graal VM for the first time

▪ Discount Service on Quarkus

▪ Discount Service on Spring Native

▪ Demo is available on svanpe/the-fast-and-furious (github.com)

https://github.com/svanpe/the-fast-and-furious

Discount Service

Discount Service

Red Prices

Customers
DB

Basket of
products

Discounts
calculated on

products

